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FIXED-POINT THEOREMS

These somewhat implzmsible laws state that points must reappear

i their original ‘positions when the surfaces on which they lie

undergo certain deformations. Their p:ract:i.cal uses are NUMerous

rubber band and then stretch it,

the order in which the points appear
does not change. This is an intuitively
acceptable conclusion of topology: the
study of properties that persist when
geometric figures are bent, stretched,
twisted or otherwise continuously de-
formed. Other topological facts are not
so clear; their validity seems intuitively
unacceptable. In this intriguing category
are the fixed-point theorems, a group of

If you mark a series of points on a

CONTINUOUS DEFORMATION of a geometric surface is repre-
sented by the gentle swirling of coffee in which the thin film of
-eream on top is never disrupted. Here the coffee is being swirled in
such a way that the particle in the exact center does not move.

by Marvin Shinbrot

results concerning points that reappear
exactly in their original positions after
the surfaces on which they lie have
been deformed.

An example will serve to introduce
them. Suppose we stir a cup of coffee,
in any way and for any length of time
but gently enough sc that the surface
is never disrupted. (As they say in
cookbooks, “Stir, do mot whip.”} Ac-
cording to one of the simplest fixed-point
theorems, when we have finished stir-

ring and the motion of the liquid has
stopped, at least one point on the sur-
face will be back where it started! Such
a point is called a fixed point. A particle
at the exact center of the surface would
be the fixed point in the simplest case:
when the liquid is swirled only in
circles. Usually the motion of stirred
coffee is more complicated, with any
particle susceptible to being moved to
any position on the surface. The rele-
vant fixed-point theorem, first proved by

FIXED-POINT THEOREM states that no matter how the surface
of the coflee is continuously deformed, there will always be a point
on the surface in the position it occupied at the start. This theo-
rem does not stipulate which point is fixed at any instant in time.
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Dutch mathematician L. E. J.
rouwer, does not specify which point
temains fixed but only that one or more
 points must do so.
" Consider another application  of
Brouwer’s theorem. If this page of
Scientific American were tom out,
crumpled and folded in any way (but
not torn) and then placed back on the
magazine in such a way that no part of
it extended beyond the edges of its
original position, then at least one of
the points on the crumpled page would
lie directly above the spot it originally
occupied. This fact, guaranteed by the
Brouwer theorem, strikes many people
as even more surprising than the cer-
tainty of a fixed point on the surface of
the colfee. To the mathematician, how-
ever, it is more readily explained be-
cause the crumpling of a page is a
simpler deformation than the swirling
of coffee; the paper cannot be stretched,
whereas the distance between two
points on the surface of the coffee can
easily change.

In order to understand how the proof
of a fixed-point theorem might be
constructed, it is simplest to look not at
a two-dimensional surface such as the
surface of the coffee or the sheet of

paper but at a one-dimensional surface
exemplified by a piece of string. Sup-
pose we stretch a string to its full length
so that it forms a straight line and then
place it on a table. Next we fold the
string any number of times and shift it
around within the confines of the line
made by the straight string. It can now
be shown that a point on the string has
returned to the exact spot it occupied
before the manipulation and is there-
fore a fixed point. This is the one-
dimensional version of the Brouwer
theorem.

The theorem is proved by represent-
ing both the original string and the
folded string as curves on a graph,
comparing the curves and demonstrating
that they intersect at some point [see
illustrations on these two pages]. To
begin, we measure the original straight
string. We call the left end zero and
specify each point on the string by its
distance in inches from the left end. If
the string is, say, eight inches long, we
can speak of the point at the far right as
“point eight.” By the same token the
position of each point on the folded
string can be specified by its new dis-
tance from the left end of the string.
If a point originally four inches from the
left has been moved as a result of the

deformation to three inches from ithe
left, its new position is designated
simply as “point three.”

In this way we define a function,
which can be denoted by f(x). The value
of this function at any point on the
string is the number representing the
position to which that point has been
moved. Thus if point four is moved to
point three, the value of f at four is
three; in symbols f(4) = 3. To say that
some point has not been moved—that s,
to say that some point is a fixed point—
is just a geometrically appealing way of
saying that the equation f(x) =« hasa
solution.

Now we construct a familiar Cartesi-
an plane and graph the function ().
In this plane the horizontal axis des-
ignates the distance of each point
from the left when the string was in
its original position, and the vertical
axis designates the distance of each
point from the left after the string has
been folded. On such a graph the
point shifted from four to three can
be plotted as a point with the coordi-
nates four (on the horizontal axis) and
three (on the vertical axis). When all

the points on the folded string are
plotted in this way, the curve connect-
ing them is a mathematical representa-
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FOLDING OF A STRING is a continuous deformation of a one-
dimensional surface. Points on an eight-inch string (top) assume
new positions when the string is folded (middle), with point 4, for

example, moving Lo point designated f(A

states that some point f(P) on the folded string must be as far from
the left of the ruler (bottom) as point P was on the straight string.
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). A fixed-point theorem

DESCRIPTION OF FFOLDED STRING in illustration at left &
provided by the jagged curve on this graph. Horizontal axis desi¢
nates the distance of a point, in inches, from the left end of th
original string. Vertical axis designates distance of a point ol
the folded string from same point on the original. Thus peint{
has the coordinates three (horizontal axis) and 2.5 (vertical axish!




tion of the physical folding of the
string. This curve may be extremely
complicated, but it has two nice and
particularly significant properties. It lies
entirely within one quadrant of the
Cartesian plane; indeed, it lies within
the square having zero to eight on the
horizontal axis as its base. This is en-
sured by the fact that the deformed
string was never moved off the original
eight-inch segment; therefore the func-
tion f(x) describing the deformation can
be neither negative nor greater than
eight. Moreover, the curve is continu-
ous; since the string was not broken in
the process of deformation, there are no
breaks in the curve describing that
deformation. These two properties of
the curve suffice, as we shall show, to
guarantee that the string has a fixed
point.

We know how to represent the folded
string as a curve on a graph; we now
have to demonstrate that if the original,
undeformed string were also represent-
edasa curve, the two curves must inter-
sect. This is not difficult to show. As-
sume that we have picked up the
straight string and returned it, still
straight, to its original position. Even
though it has not changed shape, we
can consider that it has undergone a

deformation and we can plot the func-
tion corresponding to this deformation.
If we plot the “new” distances from the
left end against the old, we get points
that are equidistant from the two axes—
points with coordinates one and one,
two and two and so forth. When we
connect these points, we have in fact
drawn the diagonal of the square built
on the base of zero to eight on the
horizontal axis.

Now, recall the curve that represents
the folded string. It must by definition
begin at zero (the left side of our
square) and end at eight (the right
side). It also must lie between zero and
eight on the vertical axis and can have
no breaks. To get from one side of the
square to the other it is necessary that
this curve cross, or at least touch the
diagonal. The only way for the curve
representing the folded string not to
cross the diagonal is for it to begin at
the lower left corner of the square or
end at the upper right corner. The first
case, however, merely implies that point
zero is a fixed point, and the second
that point eight is fixed. Therefore in
all cases there is some point of inter-
section between the two curves and
thus a fixed point on the deformed
string. This would hold true, incidental-

ly, even if, instead of the string, we had
used an elastic material such as rubber,
provided only that the deformed piece
was not broken and was replaced so as
not to lie outside the position occupied
by the undeformed piece. The only
difference that the use of rubber would
make is that the curve representing the
stretched piece need not consist of line
segments—as the representation of the
folded string must—but may have a
curved shape.

The form of the Brouwer theorem
that applies to two-dimensional sur-
faces would also hold if, instead of the
surface of coffee in a cup, we were
considering an infinitely elastic circular
piece of rubber. We can transform such
a rubber disk by stretching and fold-
ing it in various ways, making sure
only that the disk is not torn and that
it is replaced within the original cir-
cumference. The proof of the two-di-
mensional version of the Brouwer
theorem is most elegant. We first con-
sider a disk and assume that, contrary
to the theorem, no point on it remains
fixed after a deformation; it is then
possible to show that this assumption is
untenable. The steps of the proof (which
holds not only for a disk but also for a
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DESCRIPTION OF STRAIGHT STRING eight inches long is, by
the same mathematical convention, the diagonal connecting the
bottom left and top right corners of a square built on zero to eight
on the horizontal axis (because the original and the “new” posi-
tion of each point are the same). The intersection of the diagonal
and the curve describing the folded string specifies a fixed point.

PROOF OF FIXED-POINT THEOREM depends on fact that every
curve describing a folded string that is replaced uncut on top of a
straight one must cross the diagonal describing the straight string.
Twe special cases are the curves of string with fixed point at right
(top) and string with fixed point at left end (bottom). The the-
orem was set forth by the Dutch mathematician L. E. J. Brouwer.
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CONVEXITY is one of two conditions a surface must satisfy if
fixed-point theorems are to hold true on it (the other is bounded-
ness). An area is convex if it contains every point on the line con-

rectangle such as our sheet of paper)
are outlined in the illustration on the
opposite page.

The Brouwer theorem does not apply
to any area regardless of shape. An in-
finite domain, for example, need have
no fixed point, even in one dimension.
An infinitely long string can be moved
in such a way that no point remains
fixed. We need only to shift every
point of the string one inch to the right.
Since every point of the string has
been moved an inch away from its
original position, there is no fixed point.
Hence we see that for an area always to
have a fixed point when it is trans-
formed, it must be bounded. It must al-
so satisty some other condition of shape,
one that mathematicians call convex-
ity. An area is defined as convex if
it is possible to draw the line con-
necting any two points in the area so
that no point of the line lies outside the
area [see illustration at top of these two
pages).

The Brouwer fixed-point theorem we
have described as being applicable to
one-dimensional and two-dimensional
surfaces is in fact applicable to surfaces
with any finite number of dimensions.
The theorem does mot hold, however, if
the surface is infinite-dimensional. For-
tunately there are fixed-point theorems
that do apply in  infinite-dimensional
situations. We say “fortunately” be-
cause, surprising as it may seem, the
greatest interest in fixed-point theorems
is in the infinite-dimensional case. To
understand why, let us consider New-
ton’s famous second law of motion,
which states that force is the product
of mass and acceleration (F = mq). In
most instances when the Jaw is used,
the force is a given Function of the
position of an object, and this position
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can always be found, given the acceler-
ation of the object, by the technicques
of calculus known as integration. Thus
Newton’s formula can be considered an
equation for the position with the
general form f(x) = x, where x denotes
the position of the object and the known
Function, f, is determined by the forces,
the masses and the initial positions and
velocities. Fixed-point theorems are of
great usefulness in helping us to under-
stand equations of this type; indeed, a
fixed-point theorem is usually cited in
the proof that such equations have
solutions.

Now consider the following question:
Is it possible to put a satellite into a
figure-eight orbit around both the earth
and the moon? An affirmative answer
amounts to saying that an equation
flx) =x has a solution describing an
orbit of the desired type. Any solution
to such a problem is, of cowse, a
Function of time. It follows that we are
trying to find if there is a function of
time that satisfies the equation. The
function f(x) can be considered a trans-
formation of functions of time into new
functions of time in the same way that
stirring coffee can be looked on as a
transformation of points on a disk into
new points. Accordingly the question
becomes: Does the transformation rep-
resented by the function f(x) have a
fixed point? Such a function, since it is
dependent on time, must be regarded
as a “point” in an infinite-dimensional
space. It is in trying to ascertain if such
equations—equations involving unknown
functions—have solutions of a given type
that we require fixed-point theorems
holding true even for infinite-dimen-
sional surfaces.

Such questions of orbits can also be
attacked by other methods; in fact,

necting any two of its points. The two circles at left do not form
a convex surface; if one switches their position, the surface is trans-
formed so that no fixed point remains. The ring (second from left)

other methods, not involving fixed-point
theorems directly, would normally be
used to answer them. The most power-
ful methods of which we are aware,
however, are those that appeal directly
to fixed-point theorems in infinite-di-
mensional surfaces. It should come as
no surprise, then, that there are many
physical problems for which the only
known method of solution involves
fixed-point theorems. Problems of fluid
flow are often of this type. Consider a
stream bed with a bottom that rises and
falls periodically like a sine curve [see
middle illustration on page 110]. Is it
possible for water to flow over this
bottom in such a way that the surface of
the water exhibits the same general
periodicity as the bottom, or is every
kind of flow necessarily nonperiodic?
The answer is found to be that the sur-
face can be periodic. This suggests a
further question: Can the high points
and low points of the surface occur
directly above the high points and low
points of the bottom, or must they be
shifted slightly, either upstream or
downstream? It has recently been
demonstrated that there can be a flow
with the high points of its surface
lying directly over the high points of
the bottom. There is no known way
to show this without relying on high-
powered fixed-point theorems, which
cannot easily be visualized for cases in-
volving simple surfaces such as a plane. |

M here is, however, one fixed-point the-

- orem that can be readily described
for finite-dimensional spaces and that
remains valid in the infinite-dimen-
sional case. Let us describe the theorem |
as it applies to a plane, which is of |
course a two-dimensional surface. Let P
and Q represent points on the plane. If




is not convex either, since rotation of the
ring would cause every point on it to move.
The circular disk at far right is convex.

the plane is transformed by stretching,
twisting or folding part or all of it, the
two points P and Q are transformed
into new points that are determined by
the deformation process and are there-
fore functions of P and Q. We denote
this function by f, so that P is trans-

PROOF OF BROUWER’S THEOREM for two-dimensional sur-
face such as a circular disk begins with the assumption, contrary
to the theorem, that after deformation no point remains fixed. An
arrow is drawn from each point to the position to which it is moved
(1). Since no point is moved outside the disk all arrows from points
on the boundary must head into the circle (2). These arrows are
drawn again as if they emanated from a point within the circle
(3}. Considered thus, the arrows (called transformation vectors)
make one complete rotation of 360 degrees around the circle. If we

formed into the point f(P) and Q into
Q). If, following a certain transforma-
tion, the distance between the two
points f(P) and f(Q) is always strictly
smaller than the distance between the
original points P and Q, then the trans-
formation is called a contraction. There
is a fixed-point theorem stating that
every contraction has a fixed point; in
other words, there must be a point in
the same position before and after any
contraction. ’
The proof of this theorem is not dif-
ficult to visualize [see bottom illustration
on next page]. When a contraction takes
place, any point P; on the original plane
assumes a new position P,. The point
we have just designated P» occupies the
spot originally occupied by a point that
we say has moved to P,. This point in
turn now occupies the spot originally
occupied by a point that we say has
moved to P,; and so on. Since we know
that the transformation under considera-
tion is a contraction, the distance be-
tween P, and P3; must be smaller than
the distance between P, and P;. Similar-
ly, the distance between P, and P, is

o

smaller than the distance between Py
and Ps, and so on. We obtain a sequence
of points, Py, Py, Py ..., that get closer
and closer together. This implies that
the sequence must have a limit, which
means only that all these points get
closer and closer to some one point on

‘the plane. This limiting ijoint is a fixed

point for the transformation.

he theorem for contractions has been

stated and the idea of its proof has
been outlined for transformations of a
plane. In the preceding argument; how-
ever, the concept of dimension is never
used. It follows that the theorem re-
mains valid even in infinite-dimensional
spaces whose “points” consist of func-
tions of time.

Not only does every contraction have
a fixed point; it has only one fixed
point. The proof of this is straight-
forward. Suppose P and Q were two dif-
ferent fixed points of the eontraction
f(P). If this were the case, we should
have P = f(P) and Q = f(Q). Now con-
sider the distance between P and Q.
Since these are fixed points, the dis--

3

next trace the movement of points on the boundary of a concentric
circle only slightly smaller than the original one (4), the number of
rotations made by the arrows must, by the nature of continuous
deformation, remain one (5). This must be true for all concentric
circles because the rotation of the transformation vectors represents
a continuous functien. But when we consider a very small circle
all the arrows on its houndary head in roughly the same direclion,
(6) and the net number of rotations is not one but zero. This con-
tradiction shows that the assumption of no fixed point is untenable.
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FEASIBILITY OF AN ORBIT by which a satellite would revolve around earth and moon
is the type of question to which mathematicians apply fixed-point theorems for infinite-
dimensional surfaces. The element of time in any equation for the orbit makes the problem
infinite-dimensional, rendering such simple theorems as Broumwer’s theorem inapplicable.

FEASIBILITY OF WATER FLOW of a certain type over a periodically
bottom can only be demonstrated by use of fixed-point theorems, Until reeently it was not
known if the surface of the water could rise and fall according to the same general period
as the bottom. Now it has been demonstrated that such a flow is possible and that the high
and low points of the surface can le directly above the high and low points of the bottom.

rising and falling

CONTRACTION of a surface must result in one point remaining
pied before the contraction. The larger rectangle represents the ori
rubber stretehed taut; the darker, smaller rectangle represents the
back to its relaxed position. We consider the point, P, near the ¢
original reclangle. After the contraction it assumes a position we
that was at P, originally has moved inward 1o a ney

in the position it occu-
ginal surface, a sheet of
sheet after it has sprung
orner at top left on the
designate P,. The point
v position, P,. The point originally at
P, and Py is smaller than the interval
15 Py, Py. .. form a series approaching a limit:

P, has moved to Py, and so on. The interval between
between P, and P,.In fact P the fixed point.

10

tance between them should be thes
as the distance between f(P) and (0]
But the distance between f(P) and f{()
must, by the definition of a contraction,
be strictly less than the distance be-
tween P and Q. This contradiction,
calling for the distance between P and
Q to be less than itself, shows that the
original assumption that P and Q are
two different fixed points is untenall
and thus proves that there can be m{q
one fixed point. i

The fact that every contraction }
a fixed point is customarily used
prove that differential equations |
which Newton's second law of m
F = ma, is an example) have solut
And, as we have seen, such equati
can have only one solution. This sugg
one highly practical consequence of
fixed-point theorems on contractions:
any mechanical system, whether it
the moon and the earth or a swinging
pendulum, the motions of the system are’
completely determined by its initid
displacements and velocities. '

Much was made of this fact by the
great French mathematician and s
tronomer Pierre Simon de Laplace. k
his Essai Philosophique sur les Pr
babilités Laplace used it as the basis
commenting: “Given for one instant a1
intelligence which could comprehend
all the forces by which nature is au
mated and the respective situation of the
beings who compose it—an intelligence
sufficiently vast to submit these datafo
analysis—it would embrace in the same
formula the movements of the great
bodies of the universe and those of
lightest atom; for it, nothing would
uncertain and the future, as the p
would be present to its eyes.” There
probably never been a more defini
statement of the doctrine of predesti
tion. It stood, seemingly irrefutable,
more than a century, until the theories
of thermodynamics and quantum me
chanics enabled it to be contradicted.

This discussion of fixed-point theorens
serves to iHustrate a phenomenes |
characteristic of mathematics. A purely |
geometric idea—the concept of a fised
point of a transformation of a plane a
a line—has been generalized by analog |
to apply to problems in mechanics and
hydrodynamics and ultimately to the
philosophical problem of predestination
Although it would be hard to mainta
that all keys to philosophy lie in mat}s
matics, it is true that modern mathei St
ics, concerned with such interactions
geometric, algebraic and analytic idex
as we have described, does lend iteh
to philosophical applications.




